

Integrated Modeling Workshop

Interferometry Missions -- Integrated Modeling Needs

Robert A. Laskin

Manager, Interferometry Technology Program

Jet Propulsion Laboratory

Pasadena, CA

19 January 1998

IMOS Historical Perspective

- Need for integraed modeling of optical systems initially recognized (within JPL) in the mid-'80's while working on laser beam relay concepts for SDIO
- Greater impetus when the CSI Program adopted a Focus Mission Interferometer (1989) to drive technology development
 - Initial development of COMP (Controlled Optics Modeling Package)
 - Later commercialized as MACOS
- Initial funding for IMOS under JPL Director's Discretionary Fund
- IMOS has been used internally at JPL on numerous programs
- Broadbased use throughout the community now becoming widespread

Interferometers: Instruments Critical for NASA's ORIGINS Program

Planet Imager -- 2020??

Space Interferometry Mission (SIM) -- 2005

What Is An Interferometer?

An interferometer combines the light from several small telescopes to yield the angular resolution of a much larger telescope

small telescope

diameter (d)

JPL

Space Interferometry Mission (SIM)

Terrestrial Planet Finder (TPF) Concepts

Physical Baseline

Virtual Baseline

- 75-150m baseline
- 4-6 telescopes (1.5-2m aperture)
- 7-17µm observations

New Millennium DS3 Mission

RWA Disturbance to OPD Transfer Function

RWA Disturbance Induced OPD Variation

(Hardmounted RWA, Active Optics Loops Open)

RWA Disturbance Induced OPD Variation

(2 Hz Isolation, Active Optics Loops Open)

RWA Disturbance Induced OPD Variation

(2 Hz Isolation, Active Optics Loops Closed)

Interferometry Testbeds

Mt. Wilson Interferometer

MPI Testbed

Microarcsecond Metrology

SIM System Testbed

SIM

Keck

DS-3

Micro-Precision Interferometer (MPI) Testbed

Where Does Modeling Come In?

THE TESTBED IS NOT THE FLIGHT SYSTEM

Validation of IMOS on MPI

Testbed Modeling and Flight System Modeling

Interferometer Integrated Modeling Needs

- Types of analyses
 - Fringe stability vs mechanical disturbance input
 - Tip/Tilt stability vs mechanical disturbance input
 - Wavefront stability vs thermal loads
 - Slew, settle, reacquistion simulations
 - Calibration modeling and simulation
 - Emulated science data stream vs error source (mechanical, thermal, alignment, calibration,)
- Types of modeling capabilities
 - Mechanical disturbance modeling
 - Thermal disturbance modeling
 - Optical modeling
 - Structural modeling
 - Thermal modeling
 - Control system modeling
 - Orbit and attitude modeling

Interferometry Based Quantitative Requirements

- We have not really done this but it would sure be a good idea
- Examples
 - Size of structural (thermal, optical,) model in need of crunching
 - Desired runtime vs DOF
 - On workstation A
 - On personal computer B
 - On supercomputer C
 - On massively parallel supercomputer D

SIM Top Level Schedule

